熱通過率と表面温度の関係を直感的・視覚的に理解する方法

ボイラー化学工学

NEONEEETです。

熱通過率ってあれでしょ?逆数の式が3つくらいあるやつ。

計算だけならそれでいいですけど、物理的な解釈を加えたいですね。

この記事では、熱通過率と表面温度の関係を直感的・視覚的に理解する方法を解説します。

熱通過率と表面温度の関係を直感的・視覚的に理解する方法

伝熱の学習をすると熱通過率の式に必ず出会います。

$$\frac{1}{K}=\frac{1}{a_1}+\frac{δ_1}{λ_1}+\frac{1}{a_2}$$

計算式自体は非常に単純で、熱伝導と熱伝達の足し算です。

以下の式をまとめるだけですね。

$$Q=a_1(t_{11}-t_{12})F$$

$$Q=a_2(t_{21}-t_{22})F$$

$$Q=λ_1\frac{t_{12}-t_{21}}{δ_1}F$$

$$Q=K(t_{11}-t_{22})F$$

まとめた式を暗記したり、計算式に数値を当てはめているだけで、試験は合格します。

実務で総括伝熱係数を計算するときもこれでOKです。

でも、物理的な解釈をもう1手間加えるだけで、理解はぐっと深まります。

一歩進んだエンジニアを目指す人には、参考になる考え方だと思います。

熱伝導率・熱伝達率と温度差の関係

熱伝導率・熱伝達率は伝導伝熱・対流伝熱の物性値もしくは特性値です。

物性値は物が決まると自動的に決まる値ですよね。

伝導伝熱や対流伝熱の式だけを眺めていても意識しずらいですが、ここには重要な関係が含まれています。

同じ熱量を伝えるにも、熱伝導率・熱伝達率が高いほど、温度差が低い

これが熱貫流や総括伝熱係数を考えるときに効いてきます。

ここから物体の表面温度をイメージすることができるからです。

  • 熱を伝える2物体間の温度が与えられることで温度差が自動的に決まり、
  • 物質が決まっているので熱伝導率・熱伝達率が決まる。
  • その結果として可能な伝熱量が決まる

実務ではこういうアプローチで熱計算を行うだけで、表面温度を意識することは少ないのが実際でしょう。

表面温度を考えるというのは、この意味では「重要ではないけど大事なこと」のカテゴリーに入ると思います。

絶対に必要、というわけでは無い考え方ですからね・・・。

以下では、物体の表面温度を3ケースに分けて考えます。

配管内外で熱を伝えるという一般的なシチュエーションを想定しています。

管内・管外ともに液体の場合

管内に液体・管外に液体という液液熱交を想定しています。

この場合の、管周りの温度は以下のようなイメージになります。

管内管外液体

管外に温水・管内に冷水を通して、冷水を温めるというケースですね。

赤色の部分が温水の熱伝達部分、黄色が配管の熱伝導部分、水色が冷水の熱伝達部分です。

ここで強調したいことは、赤色と青色の温度勾配

管外側の勾配の方が厳しく、管内の方が緩いです。

言い換えると配管の表面温度は冷水側に近い温度になるということです。

温水側の熱伝達率が低いので、温度勾配が付いてしまいます。

温度勾配を付けないと熱が伝わらない、という方が正しいですね^^

さて、管外側の方の熱伝達率が低いのはなぜでしょうか?

これは流速が小さいから。

管の本数や、管外のバッフルの間隔で若干は左右される部分はありますが、

普通は管外の方が流速が低くなります。

管外の方が流路面積が大きいのが一般的ですからね。

管の内と外で径が違うから面積が違うという理解からリンクさせても良いです。

「普通はこうなるはずだ」という予測をしながら、詳細計算を行って妥当性を検証するというプロセスを経る方が、

単に計算式に数値を当てはめて終わりという考え方より1歩上の設計です。

そのための拠り所の1つとして持っておきたい視点です。

管内が液体・管外が気体の場合

管内が液体・管外が液体の場合を考えます。

管内液体・管外気体

これは配管内の液体(水)が夏に温められるケースを想定しています。

冬だと温度グラフを上下逆に考えればOKです。

ここのポイントは、空気と水の熱伝達率差。

当然ですが、空気の方が熱伝達率が低いです。密度が低いから当然です。

「熱伝達率が低い方が、温度差が高い」ですよね。

この結果、表面温度は水側に引きずられます。

夏場に空の配管に手を当てると火傷しそうになりますが、水が入っているとそうではありません。

配管内の水があることで表面温度が下がります。

片側から加熱されて他方が冷却されていないことで熱くなるという意味で、

夏場に車のボンネットに手を置いたり、車の中に入ろうとしたときにも同じような経験をできるでしょう。

管内で液体が蒸発・管外で蒸気が凝縮する場合

最後に、管内で液体が蒸発、管外で蒸気が凝縮するケースを見てみましょう。

管内蒸発・管外凝縮

蒸気でプロセス液を蒸留させるというケースを考えています。

蒸発・凝縮などの相変化を伴う熱伝達は急激に上がります。

伝導伝熱と対流伝熱の差がかなり無くなります。

そうすると、伝導伝熱部分である固体の表面温度差が付くことになります。

同じ物体の両側で温度差が付くと、膨張差が付きます。

最悪は亀裂や破損の原因となります。

バッチ系化学工場ではガラスライニングやフッ素樹脂ライニングの破損を気にするときに、表面温度の話題がでます。

ボイラー特に水管ボイラーでは、管内が水・管外が空気の状態で、管内が沸騰という相変化を伴うため、

管外面の温度は高くなく、水の沸騰温度の20~30℃程度と言われています。

ボイラーの火室内は700℃をゆうに越えます。

高圧水の沸騰温度+30℃程度の300℃前後まで表面温度が下がると考えると、イメージが付くと思います。

最後に

熱通過率と表面温度の関係を直感的・視覚的に理解する方法を解説しました。

熱伝導率・熱伝達率が高いほど温度差は低いです。

これを3ケースに分けて視覚的に解説しました。

この記事が皆さんのお役に立てれば嬉しいです。

コメント

Translate »
タイトルとURLをコピーしました